DOWNLOAD Sharp UP-600 / UP-700 (serv.man25) Service Manual ↓ Size: 2.63 MB | Pages: 51 in PDF or view online for FREE

Model
UP-600 UP-700 (serv.man25)
Pages
51
Size
2.63 MB
Type
PDF
Document
Service Manual
Brand
Device
ECR / UP600-700 Service Manual
File
up-600-up-700-sm25.pdf
Date

Sharp UP-600 / UP-700 (serv.man25) Service Manual ▷ View online

3-4. ROM space
Fig.5 shows the ROM space. The UP-600/700 uses 2MB of NOR-
type flash memory instead of conventional ROM, so that the FROS1#
from the MPCA9 is input into the chip enable of the flash memory.
3-5. VRAM & RAM space
The VRAM is the display memory of the LCD.
3-6. Extended I/O area
The addresses from F00000h to FFFFFFh are called an extended I/O
area. The UP-600/700 uses the following addresses as the break
address register (BAR) for SSP.
FFFF00h 
 FFFFFFh
4. LCD display
The UP-600/700 uses a 320 x 240 dot monochromatic LCD for the
main display and VGAC (M66271) for the display controller which is
connected to H8/510 in the ISA bus connection mode.
4-1. Block diagram
Here is the block diagram of the LCD and its allied components.
4-2. LCD panel 
The LCD panel uses a dot-matrix liquid crystal module with mono-
chromatic STN and CCFT backlight. The resolution is 320 x 240.
4-3. Display controller
Matsushita VGAC (M66271) is used for display controller.
VRAM is present on the address space of the CPU and it is possible
to write and read data from the CPU side through the lower 9600 byte
address of 128 KB size in addresses C00000H ~ C1FFFFH.
C00000H - C1FFFH:
4-4. LCD ON control
The LCD is turned on and off by controlling the bias power supply for
the LCD using the terminal LCDENB of the M66271.
LCDENB is in low level when resetting. When bit 0 of the mode
resistor of the M66271 by software is set to high level, the power is
supplied to the LCD, thus turning on the LCD.
4-5. Back light control
The backlight ON/OFF is controlled by the same LCDENB as used for
controlling the LCD ON.
4-6. Luminance and contrast adjustment
Luminance: Luminance is adjusted with an inverter which has dim-
ming function. (Fixed)
Contrast:
Contrast is adjusted by controlling the contrast adjust-
ment voltage (VO) of the LCD.
5. Customer display
The UP-600/700 can incorporate a UP-P16DP for the customer dis-
play.
6. SRAM (Standard)
The device is HYUNDAI 4MB SRAM (HY628400ALLT2-70 512K 8bit)
with access time of 70ns.
200000h
(MAX4MB)
ROS1
5FFFFF
* Lower 64KB of the ROS1 is
  mapped on the 0 page area.
* ROS1 is decoded by
  MPCA9.
600000h
C00000h
800000h
A00000h
CFFFFFh
RASPN1
VRAM
(2MB)
RASPN2
(4MB)
(1MB)
* All the decode signals in the
  area in the figure are supported
  by MPCA9.
* RAS1 signals from MPCA9
  correspond to 2MB 600000h to
  7FFFFFh.
* OPTION RAM board (2MB and
  4MB) interfaces using RAS2
  as the base signal.
* The actual VRAM is 128KB,
  but it is accessed by every 
 128KB of bank according to
  VGAC specification.
CPU  H8/510
SD0-7 
A0-13 
RD#
RD# 
HWR#
LWR# 
PHAI
CLK 
WAIT#
UD0-3
LD0-3 
WAIT#      
LCD (320 x 240)
MPCA8
LP
LP 
LCDWT
FLM
FP 
 VIO#
IOCS# 
DCLK
DCLK 
VMEM# MCS# 
VEE
BACKLIGHT
M66271
M
BIAS 
POWER
LCDENB
8bitMPU connection setting 
HWR# : "H"
BHE# : "H"
MPUSEL : "L"
6-1. CPU interface
The figure below shows a typical pseudo SRAM interface in the UP-
600/700.
6-2. SRAM address
Standard SRAM is decoded as follows by the RASPN1 signal.
780000h 
 7FFFFFh
The base signal is 2MB. It thus wraparounds with 600000H 
7FFFFFH 1.5MB.
7. NOR-type flash memory
Here is the explanation for the interface of NOR-type flash memory.
The device is Sharp’s LH28F016SU flash memory which consists of
512 K words 
×
 16 or 1 MB 
×
 8, with 32 blocks of 64 KB.
7-1. CPU interface
The figure below shows a typical interface for the LH28F016SU of the
UP-600/700 system.
7-2. Device control
After resetting, the device automatically enters the array read mode
and perform the same action as the usual ROM, thus requiring no
special consideration when reading data.
Data can be written at high speed by using the page buffer.
8. SSP control
The UP-600/700 uses flash memory in the place of EPROM, so it is
possible to rewrite the contents of the flash memory in changing the
program. However, since the existing gate array MPCA8 is used, it is
also possible to use the conventional SSP.
8-1. Operation
Like the MPCA5 ~ 8, the MPCA9 adopts the break address register
comparison method for detecting addresses. The operation of this
method is briefly explained below.
The gate array always compares the break address register (BAR)
built in the gate array, with the address bus to monitor the address
bus.
If both agree, the gate array outputs the NMI signal to the CPU, which
in turn shifts from normal handling to exception handling.
In both the MPCA5 ~ 8 and the MPCA9, SSP is achieved by the
above operation.
The setting of the break address register (BAR) is directly written in
the addresses from FFFF00h to FFFFFFh.
9. Interrupt control
There are roughly two types of interrupts:
Internal interrupts: Controlled inside the CPU
External interrupts: Input into the CPU from outside
9-1. Internal interrupts
Device interrupts built in the CPU are used for the following applica-
tions:
Event factor
Application
SC11
Interrupt source as RS232 : CH8
SC12
Not used (SC1 is used for CKDC interface.)
FRT1
(ICI)
(OCRA)
(OCRB)
(OVF)
INTMCR 
 MCR interrupt (to FT11 terminal)
FRT2
(ICI)
Standard SHEN event (for CKDC)
(OCRA)
Simple IRC timer event
(OCRB)
RS232 timer event
(OVF)
System timer (53 ms)
TMR
(CMA)
(CMB)
(OVF)
WDT
(OVF)
Drawer open timer
A/D
Not used
NMI
SSP request
9-2. External interrupts
The following types of external interrupts are available:
NMI (SSP)
IRQ0 (Standard I/O interrupt)
IRQ1 (RS232 interrupt)
IRQ2 (Not Used)
IRQ3 (Used as SCK terminal)
S RAM(Standard)
A0~A18
A0~A18
A0~A21
D0~D7
D8~D15
/RD
/RD
MPCA9
/WR
/HWR
/CE
S RAM(Option)
A0~
A18
RASPN2
74LV138
A19~
A21
A,B,C
Y
/G
/RESET
RASPN1
RESET-
5V
FVPON
NORDY
H8/510
DATA
RD-
PORT64
PORT63
MPCA8
FROS1-
WE#
OE#
CE0#
GND
VPP
CE1#
RP#
3/5#
VCC
BYTE#
RY/BY#
A0~A2
DQ0~DQ1
WP#
LH28F
 016SUT
ADDRES
HWR-
10. WAIT control
The weight control function built in the MPCA9 is used to provide an
interface with low-speed devices.
10-1. Block diagram
The block diagram of the wait control function is shown.
In the figure, the decoder, wait enabling register, AND-OR sections
are the same as those in the MPCA6 or 7, but other components are
newly incorporated in the MPCA5.
EXWAITZ and WAITZ are external weight signals which are to be
ORed inside the MPCA9 and output to the WAITZ. The EXWAITZ is a
general-purpose wait request terminal, and WAITZ is the wait request
signal from the VGA controller.
11. CKDC9
The UP-600/700 on CKDC9 for the CKDC PWB and one CKDC9 for
POLE display (option) to carry out the following control operations.
CKDC PWB CKDC9:
Clock (second data readable)
Buzzer
System reset
Key/Clerk switch
POLE CKDC9(UP-P16DP)
Customer display tube
11-1. Interface
CKDC9 is connected through the MPCA8.
Selector
/AS
 
CLK    WAIT RESET Counter
START
/RESET
/EXWAIT
/VWAIT
/LCDWAIT
/WAITZ
φ
WAIT
enable
For
RASP-
/RESET for 1,2,3WAIT
WAIT
enable
For
MISC
WAIT
Count
For
RASP
D
/Q
Selector
Selector
/RESET
/RESET
for 
1WAIT
/RESET
WAIT
Count
For
MISC
WAIT
Count
For
RASPN
WAIT
Count
For
RASPN
D
/Q
D
/Q
WAIT
enable
For
VRAM
VGA
I/O
D
/Q
Terminal autoweight signal
TXD2(P87)
SCK2(P83)
RXD2(P84)
TXDI
SCKI
RXDI
H8/510
MPCA8
INT1
IRQ0
IRQ0
RES
STOP
(P57)
RESET
RESET
STH
HTS
SCK
CKDC9
KRQ
SHEN
STOP
HTS2
SCK2
STH2
HTS
SCK
STH
SRES
RESET
SW
FTI2
CKDC9
HTS1
SCK1
STH1
HTS
SCK
STH
INT4
SHEN
RESET
reset from MAIN
VFDC
VFD
UP-P16DP/UP-I16DP
Key
Buzzer
12. Option RAM interface
12-1. Interface
The expanded RAM connector terminals are shown in the table.
The 40-pin RAM is used for the connector.
Extension RAM connector terminals
Signal Name
Pin No.
Pin No.
Signal Name
+5V
1
2
N.C.
HWR
3
4
N.C.
GND
5
6
A21
A20
7
8
A19
A18
9
10
A17
A16
11
12
A15
A14
13
14
A13
A12
15
16
A11
A10
17
18
A9
A8
19
20
A7
A6
21
22
A5
A4
23
24
A3
A2
25
26
A1
A0
27
28
RD
D7
29
30
D6
D5
31
32
D4
D3
33
34
D2
D1
35
36
D0
RASPN2
37
38
VCKDC
GND
39
40
GND
13. Reset sequence
The reset sequence block diagram is shown below. Note that RESET
signal (system reset) and CKDCR signal (CKDC reset) are different
from each other.
13-1. Power ON/OFF 
The flow of signal processing at the time of the power supply turning
On/Off is as follows:
Table 19
<Power OFF>
Power supply
MPCA9
CPU
CKDC9
1
POFF 
 L
2
IRQ0 
 L
3
STOP 
 L
4
RESET 
 L
(System reset)
Table 20
<Power ON>
Power supply
MPCA9
CPU
CKDC9
1
POFF 
 H
2
STOP 
 H
3
RESET 
 H
(System reset)
The table below shows the timing chart.
POFF 
CKDCR 
(CKDC reset) 
VCC 
POFF 
INT0 
IRQ0 
STOP 
RESET 
(System reset) 
SLIDE 
SW 
CKDC9 
MPCA9 
POWER 
SUPPLY 
CPU 
PG GOOD
RESET
STOP
SHEN
SCK
+5V,+12V
(POFF)
10ms MIN
8 PULSE
 
(System)
Power supply On
Power supply Off
Page of 51
Display

Click on the first or last page to see other UP-600 / UP-700 (serv.man25) service manuals if exist.