DOWNLOAD Sharp ER-A470 (serv.man2) Service Manual ↓ Size: 929.75 KB | Pages: 57 in PDF or view online for FREE

Model
ER-A470 (serv.man2)
Pages
57
Size
929.75 KB
Type
PDF
Document
Service Manual
Brand
Device
ECR / ERA460 470 Service Manual
File
er-a470-sm2.pdf
Date

Sharp ER-A470 (serv.man2) Service Manual ▷ View online

1) Power on/off sequence
Fig. 9-2
Hatched area indicates logic unstable.
<At power on>
When +24V power rises, the signal POFF is forced high (A), by which
time the +5V supply becomes stable. The CKDC6 monitors the state
of POFF while updating the timer/calendar in the low power standby
mode, and when the high state of POFF is detected, the system reset
signal (RESET) is set high (B), by which time the output lines STOP
and SCK of the CPU and MPCA6 have been initialized to high, re-
spectively (C). Thereafter, the CKDC6 sets SHEN active (low) (D) to
notify the CPU of the command/data communication ready state.
One byte data/command can be transferred with eight SCK pulses
(F). When one byte has been transferred with eight SCK pulses, the
CKDC6 sets SHEN high to initiate internal processing. After comple-
tion of the internal processing, when the next byte transfer becomes
ready, the CKDC6 sets SHEN back to a low state to wait for the next
byte transfer (G).
Thereafter, the SHEN and SCK timing described above is repeated to
carry on the communication.
<At power off>
When +24V power drops, POFF goes low (H).
A low on the POFF line causes a low level interrupt request which is
sent the IRQ0 pin of the CPU. Within a maximum of 10msec of the
low level IRQ0 input, the CPU performs software processing neces-
sary for power-off, after which the STOP output is set low (I).
When  STOP goes low, the CKDC6 sets RESET low to reset the
whole system (J). And, the +5V supply is held at 4.75V or higher
voltage, after which the voltage drops to a level that the logic circuit
does not operate.
2) Key and switch scanning
Strobes ST0 ~ ST3 are decoded on the keyboard by two 74LS138 3-
to-8 decoders to generate 16 strobe signals of S15 ~ S0.
The key matrix consists of 16 strobe lines and 16 returns lines of
KR0A, KR1A, KR2A, KR3A, KR0B, KR1B, KR2B,  and  KR3B.
To minimize interfacing lines between the CKDC6 and the keyboard
unit, two multiplexers (74HC153) are used to multiplex signals by the
timing controlled with the signals KEX0 and KEX1 which are sent to
the CKDC6 on the return lines of KR0 ~ KR3.
Timing ST
Fig. 9-3
The mode switch in provided with a special return line MODR, apart
from the above return lines.
In the same manner, the clerk, paper feed key  (J/R), and receipt
on/off switches use CFSR as the return line.
3) DISPLAY CONTROL
Fig. 9-4
CKDC6 directly drives the 7-segment display unit and the dot display
is driven via M66004FP.
<7-segment display>
Fig. 9-5
A
B
C
D
G
I
J
E
F
H
+5V
POFF
RESET
STOP
SHEN
SCK
+24V
12.45ms
778µ S
10µ S 10µ S 10µ S
KR0A
KR3A
KR0B
KR3B
80µ S
ST3
S15
ST2
ST1
ST0
S14
ST0
KEX0
KEX1
KR0~KR3
S//
RES
DSO
DSCK
DCS
+5V
DG0~
DG11
Display
controller
M66004
FP
DDIG
SO2
SCK2
SDISP
SA~SG
DP,ID
G1~10
7SEG-Display
D0~D35
DOT-Display
16
CKDC 6
976µS
15µS
44.8µS
58µS
Gm
SA,SB,SC,SD
SE,SF,SG
DP,ID
Gm+1
976µS x n
– 28 –
<Dot display>
Fig. 9-6
IMPORTANT:
The CKDC6 lines are not high voltage resistive ports. Damage may
occur to the CKDC6 if lines are shorted carelessly when using oscillo-
scope probes.
Dot matrix tube
A 4-bit binary output signals (ST0-ST3) from CDKC6 are converted
into the digit drive signal (DG0-DG11) in the M66004FP. 
<Dot display control>
The CKDC6 controls the character segment (5 x 7) and the indicator
of the dot display by using the controller (M66004FP) for dot display
control.
1
M66004FP/Dot display control signal
Signal
name
Contents
Pin/Remark
DSO
Serial data output signal
for M66004FP
C-MOS pin
DSCK
Serial shift clock output
signal for M66004FP
C-MOS pin. 
Requires to be pulled up
DCS
Chip select output signal
for M66004FP
C-MOS pin
10. Power supply circuit
Fig. 10-1
+24V:
Printer, solenoid power
+5V:
VCC (Logic power)
VBAT:
Battery charge
–32V:
Display tube power
VF1, VF2:
Display tube power (AC)
VRAM:
Battery back-uped power
VCKDC:
CKDC-4 Back-up power
11. Switching regulator circuit
Fig. 11-1
By switching VIN (+28.8V) by the transistor TR1 within the STR2024,
DC+24V supply is obtained through the LC network. Stable +24V is
obtained by controlling on/off duty of TR1.
ION:
Current when TR1 is on.
IOFF: Current when TR1 is off.
ENST
ST0~ST3
19.1µ s
DGn
"h" th digit
display
DGn+1
Display off
D0~D35
"h" th didit display pattern
(h+1) th didit display pattern
17.2µ s
(h+1) th digit display
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
D32
D33
D34
D35
: Indicator
Noise filter
DC-DC
Converter
circuit
Battery
circuit
VRAMP
+5V
-32V
VF1/VF2
F1
F2
Switching
regulator
(STR2024)
+24V
+
-
~
~
VCKDC
VBAT
VIN
+28.8V
+
4700µ
63V
5
VIN
TR1
Refer-
ence
voltage
circuit
3
2
4
1
L1 220µ H
IOFF
ION
+24V
Load
C2
2200µ F
35V
R2
STR2024
– 29 –
12. I/R communication  circuit
In the ER-A460/A470, infra-red data transmission of the optical
communication system is performed. 
System
IRDA
ASK
REMOTE KEYBOARD
Carrier wave
950 nm
900 
 1050 nm
900 
 950 nm
Sub-carrier wave
(16 times of baud rate clock)
500 kHz
±
10%
33 
 40 kHz
Modulation
system
"0": HIGH level
"1": LOW level
Only around the center of the bit cycle
in HIGH level, 3/16 of the bit cycle is
set HIGH, and the rest is set LOW.
Pulse modulation:
The pulse array of data code is
modulated by the AM system.
Pulse modulation:
The pulse array is modulated by data
codes in the PPM system.
Primary modulation:
The sub-carrier waveform is
amplitude-modulated with this pulse
array.
Primary modulation:
The sub-carrier waveform is
amplitude-modulated with this pulse
array.
Secondary modulation:
With the sub-carrier waveform which
was modulated in the primary
modulation, infra-red rays are
amplitude-modulated.
Secondary modulation:
With the sub-carrier waveform which
was modulated in the primary
modulation, infra-red rays are
amplitude-modulated. 
Modulated
waveform
Baud rate
2.4 
 115.2 kbps
9.6 
 57.6 kbps (ZR-5000: 9600 bps)
Serial
communication
system
Start-stop synchronization system
Data length: 8bit
Parity:
None
Stop bit:
1
Start-stop synchronization system
Data length: 8bit
Parity:
ODD
Stop bit:
1
Transmission
distance
About 0.75m: ECR to ECR
Min. 0.65m
About 0.75m: ECR to ECR
Min. 0.65m
About 1m
500KHz
"0"
"1"
"0"
"1"
16-division
3/16
UART
Reverse
UART
IRDA
ASK
58.5~76.5 ms
108 ms
108 ms
9 ms
4.5 ms
13.5 ms
Leader Code
Custom Code
      8 bits
Custom Code'
      8 bits
Data Code
      8 bits
27 ms
18 ms~36 ms
58.5 ms~76.5 ms
Data Code
      8 bits
9 ms
4.5 ms
13.5 ms
1.125 ms
2.25 ms
0
1
1
0
0
1
9 ms
2.25 ms
11.25 ms
0.56 ms
Time is the value for 455kHz oscillation.
First
 time
Carrier waveform
Carrier frequency.....fc=fosc/12=38 khz
Second time and later 
(Transmitted only when the key is depressed.)
8.77µs
26.3µs
9 ms or 0.56 ms
<Remote keyboard>
0.56 ms
– 30 –
Reception circuit
The infra-red signals which was transmitted from the transmission
unit through the air is received by the photo diode, and sent through
the two-system circuit to the MPCA6, where they are modulated and
inputted to the CPU. 
Transmission circuit
With the IRTX signal from the MPCA6, Q2 is turned on/off to light
LED1, 2. To strengthen the light intensity, two LED’s are used.
PD
Amplifier
Band-pass
filter
Hysteresis
comparator
ASK
AGC
Amplifier
Bypass
filter
Hysteresis
comparator
IRDA
/REMOCON
+5V
R67
R70
IC1A
R69
C49
C61
R51
R52
R53
IRDA
/REMOCON
MPCA6
C45
Q2
R54
R55
R68
PD1
R56
MPCA6
R56
PD1
R56
R57
C46
R58
R68
R59
Q2
C47
R60
C48
R62
R61
C49
R66
R64
R63
R69
R70
R67
IC1B
C50
R65
+5V
ASK
Q2
LED2
LED1
R72
+5V
R71
IRTX
MPCA6
– 31 –
Page of 57
Display

Click on the first or last page to see other ER-A470 (serv.man2) service manuals if exist.