DOWNLOAD Sharp ER-A610 (serv.man4) Service Manual ↓ Size: 1.03 MB | Pages: 64 in PDF or view online for FREE

Model
ER-A610 (serv.man4)
Pages
64
Size
1.03 MB
Type
PDF
Document
Service Manual
Brand
Device
ECR / ERA610 Service Manual
File
er-a610-sm4.pdf
Date

Sharp ER-A610 (serv.man4) Service Manual ▷ View online

(
1)  “Internal I/O” means the registers in the H8/510.
(
2)  “External I/O” means the base system I/O area to be ad-
dressed in page 0. 
(
3)
"Memory image area" means the lower 32KB of ROM area
which is projected to 000000H ~ 007FFFH for allowing reset
start and other vector addressing, or the lower 32KB of ROM
area which is projected to 008000H ~ 00FE7FH for allowing 0
page addressing of work RAM area. 
(
4)  “Expansion I/O” means expansion I/O device area which isad-
dressed to area other than page 0.
2
0 page memory map
Fig. 5-2
ROM image area: Image is formed in ROM area address C00000H
C07FFFH. This area is identical to IPL ROM area which will be-
separately developed. 
RAM image area: Image is formed in RAM area address
1D8000H1DFE7FH. (
Note)  
Note:  Image can be formed in lower 32KB of RAS2.
3
ROM area memory map
Fig. 5-3
These two decode signals decode 512KB space respectively and
canbe used with max. 4MB ROM. 
Note: The lower 32KB of ROS1 signal is formed as OR of
image area in 0page. 
4
RAM area memory map
Fig. 5-4
In the three RAM chip select, the following address is decoded. 
000000H
004000H
008000H
00FFFFH
1FFFFFH
ROM image area
32KB
RAM image area
slightly smaller than32KB
NOT USE
00F800H
00FE80H
00FF80H
00FFFFH
RAM image area
Internal I/O area
External I/O area
(0 page)
1BFFFFH
RAM area
100000H
400000H
BFFFFFH
NOT USE
NOT USE
RAS1  128KB
RAS2  128KB
RAS3
1MB
(2MB)
1C0000H
1E0000H
200000H
100000H
400000H
BFFFFFH
NOT USE
NOT USE
RAS1  128KB
RAS2  128KB
RAS3
1MB
(2MB)
1C0000H
1E0000H
200000H
 20 
CS signal
Address
 RAS1
1C0000H~1DFFFFH
(008000H~00FE7FH) 
 Note
 RAS2
1E0000H~1FFFFFH
(008000H~00FE7FH) 
 Note
 RAS3
200000H~3FFFFFH
Base signal is for 2M. 
Note:  RAS1 signal is formed as OR in the image area of 0 page.j
(Lower 32KB). 
RAS2 signal is formed as OR in the image area of 0 page.
(lower32KB).
5
I/O area memory map
Fig. 5-5
Note 1: MPCCS signal is the base signal for MPCA5 internal reg-
isterdecoding, and does not exist as an internal signal.
Note 2: OPCCS1 and OPCCS2 signals are decoded in the OPC
(optionperipheral controller) using the base signal OPTCS
for optiondecoding. They does not exist as external sig-
nals.
2) Block diagram
Fig. 5-6
1
ROM control
Fig. 5-7
IPLON:  IPL board detection signal incorporated in the option slot.
Note used in the ER-A650. (Not used)
Access is performed with two ROM chip select signals ROS1 and
ROS2, which decode 512KB address area respectively to access-
max. 4MB ROM. 
2
RAM control
Fig. 5-8
Access is performed with two RAM chip select signals RAS1, RAS2
and RAS3. The control register in MPCA5 allows selection of  page-
image memory area. (RAS1 is selected for initializing.)
: For 0 page image area, selection between RAS1 and RAS2 can
bemade with the control register. The 0 page control registerper-
forms initializing at the timing of no stack processimmediately
after resetting. 
6. SSP circuit
1) Block diagram
This is the circuit employed to do the Special Service Preset(SSP). 
(Block diagram)
Fig. 6-1
00FF80H
00FFA0H
00FFFFH
MPCCS
NOT USE
NOT USE
NOT USE
NOT USE
OPCCS1
OPCCS2
00FFC0H
00FFD0H
00FFE0H
00FFF0H
(*1)
(*2)
(*2)
CPU
MPCA5
ROM1
RAM1
RAM2
(OPTION)
ROM2
(OPTION)
RAM3: Memory PWB
(OPTION)
Data bus
Address bus
ROS1
ROS2
RAS1
RAS3
RAS2
Address
A23~A14
(IPLON)
Address
decorder
C80000H~CFFFFFH
C00000H~C7FFFFH
000000H~007FFFH
MPCA5
ROS2
ROS1
Address
A23~A14
Address
decorder
1C0000H~1DFFFFH
008000H
~
00F7FFH
*1
1E0000H~1FFFFFH
RAS1
RAS2
RESET
D
CK
Q
R
DOI
S8F
Control register
MPCA5
CPU
MPCA5
A0~23
D0~D7
NMI
SSPRQ
 21 
(MPCA5 block diagram)
Fig. 6-2
As the address detection system, the brake address register compari-
son system is employed though the mapping system was employed
in the conventional monitor RAM. The address registerlocated in
MPCA is always compared with the system address bus to monitor
and generate NMI signal at a synchronized timing and togo to NMI
exception process. 
In the exception process routine service routine, the entry address is
checked to go to SSP sub routine. 
Entry to the break address register (BAR) is performed through ad-
dress FFFF00H or later decoded in MPCA5. 
2) SSP register
The break address register (BAR) is accessed through direct address
of FFFF00H~FFFFFFH. Entry number is 32 entry.
Fig. 6-3
D0~
    D7
A23~
     A0
BAR  0
BAR  N
REGCS
Decode
Comparator
Coincide
Coincide
SPE
(Enable register)
SSPRQ
(NMI)
Control signal
ROMCS
O
N
1
2
3
4
FFFF00
H
1
2
3
4
5
6
7
BAR0
BAR1
BAR2
7
0
 22 
Each BAR is composed of 4 byte address. Bit composition is as
follows:
Fig. 6-4
4
 is the enable register. The entry registers of the break address are
assigned to 
1
2
, and 
3
. Each bit of address corresponds to each
bit position, writing to 
1
2
, and 
3
 is performed without shifting. The
corresponding area is 1MB space of ROS1 and ROS2.  
3) SSP register access method
Access to SSP break address register is performed through the tem-
porary register as shown below:
Fig. 6-5
Enable flags can be accessed individually. 
Though enable register 
4
 can be accessed individually, writing to
brake address registers 
1
 and 
2
 is performed at the same time as
writing to brake address register 
3
 through the temporary register. 
Therefore, set 
1
 and 
2
 to temporary, then write into 
3
 at last. 
Since the temporary register is commonly used by BAR sets, thefol-
lowing register setting is performed after completion ofsetting of each
break address register. 
3
SSP control method
Access to the enable register and the brake address register is only
possible when writing to them from the CPU. 
Information on which brake register the SSP brake is detected in is
read as binary data by reading address FFFFFFH (*1). 
Used in an expanded register. 
Normally is a reserve bit. Whenreading, fixed to 0.
If there are 32 break registers, binary expression is made with the
above 5 bits, and 0th is “00000
B
” and 31st is “11111
B
.” 
When detected simultaneously by two or more break registers,
onewith the smaller BAR number is read as binary data. 
The brake signals (NMI) and the above detection data (CMP0~4)
areheld until the above detection data are read. So read should be-
made in the NMI sub routine. (Clear by FFFFFFH read.)
1: FFFFFFH is not fulldecoded. (FFFF00H~FFFFFFH). There-
fore,unnecessary read access in parentheses should not be
performed. 
1
2
3
4
A19 A18 A17 A16 A15
A8
A7
A2
EN
Upper bits
Intermediate bits
Lower bits
Enable register
EN (bit7) = 1 Enable
               = 0 Inhibit
Don't care for "-----."
< BAR composition >
1
2
3
4
A19 A18 A17 A16 A15
A8
A7
A2
EN
WR
WR
Temporary
Temporary
bit 7
6
5
4
3
2
1
0
0
0
CMP4
0
CMP3 CMP2 CMP1 CMP0 (FFFFFFH)
 23 
Page of 64
Display

Click on the first or last page to see other ER-A610 (serv.man4) service manuals if exist.