DOWNLOAD Panasonic UF-6300 / UF-6200 / UF-5300 (serv.man3) Service Manual ↓ Size: 5.4 MB | Pages: 117 in PDF or view online for FREE

Model
UF-6300 UF-6200 UF-5300 (serv.man3)
Pages
117
Size
5.4 MB
Type
PDF
Document
Service Manual / Other
Brand
Device
Fax / VERSION 1.0
File
uf-6300-uf-6200-uf-5300-sm3.pdf
Date

Panasonic UF-6300 / UF-6200 / UF-5300 (serv.man3) Service Manual / Other ▷ View online

25
     
UF-6300/6200/5300
     
LVPS
Input Circuit
AC line voltage travels to the rectifying circuit through the line filter. The line filter eliminates RFI noise 
which may otherwise pass to the AC line from the power supply unit. It also protects the power supply 
unit from transient noise which may pass into the unit from the AC line.
Rectifying Circuit
AC power is rectified by D100 and charges C103 to make high DC voltage, then supply power to 
converter circuit.
Kick-on voltage for control IC (IC105) is supplied AC power through R134, R135 and R136.
Inrush current is limited by TH100.
Converter Circuit
A IC (IC105), in combination with transformer T100, form a switching power supply circuit using the RCC 
(Ringing Choke Converter) system.
As soon as power is applied to the Power Supply Unit, AC line voltage is rectified by D100 and is 
smoothed by capacitor C103.  The protection circuit at the time of start-up is controlled by an IC (IC105) 
and resistors R134, R135 and R136.
Main Switching Circuit
In the above circuit, when the main switching transistor, Q100, is turned On, input voltage, Ei, is supplied 
to the primary winding of transformer T100.  However, no current will flow through diode D102 of the 
secondary side, due to reverse polarity of the secondary winding causing no current flow within T100.  
But the transformer charges with energy.  When Q100 is turned Off, the supply voltage to the primary 
winding shuts off and the windings of T100 change polarity, allowing D102 to conduct, releasing the 
energy accumulated in T100 to the circuit. When the energy is discharged through D102, Q100 turns on, 
once again reversing the polarity on T100 windings, creating a self-oscillation circuit.
Ei
Eo
D102
P --- Primary Winding
S --- Secondary Winding
B --- Control Winding
T100
Q100
P
B
Control Circuit
S
+
26
     
UF-6300/6200/5300
     
In the actual circuit, the fixed output voltages are obtained by changing the winding ratio of transformer 
T100. In this converter circuit, the output voltages are stabilized by controlling the duty cycle of the ON 
and OFF timing of the transistor. In this power supply, the bias winding is built into the transformer. The 
power supply has four outputs, +24 VDC, -5 VDC, +5 VP and +5 VDC. The +24 VDC output is protected 
by the Error Detection Circuit, and the +5VDC, +5 VP and -5 VDC outputs are protected by the circuitry 
inside of the voltage regulator IC.
Control Circuit and Error Detection Circuit
The control circuit amplifies the output of the duty cycle according to the error voltage detected by the 
Error Detection Circuit, and drives the main transistor Q100. The method used to change the duty cycle 
is to change the ON time period. When the output voltage of the +24 VDC circuit rises, the current of 
photo coupler PC103 increases, the output pulse width of the control circuit decreases and the ON time 
period of Q100 decreases. This control circuit decides the minimum OFF time period by itself. When the 
oscillation frequency becomes higher and the OFF time period becomes minimum, the OFF time period 
remains unchanged and only the ON time period decreases. This way, there is a upper limit of the 
oscillation frequency and the duty cycle is expanded.
Over Current Limiter (O.C.L)
The +24 VDC output is limited by Ton MAX Limiter (ON time period of transistor Q100) which is part of 
the control circuit. The +5 VP, -5 VDC and +5 VDC outputs have over current limiters provided inside the 
voltage regulator.
The value of output voltage is
Eo=d/(1-d)*Ei
d=Ton/Ts
Equivalent circuit model for the RCC.
Ton : ON time of Q100
In the equivalent circuit when SW is ON, current flows
        SW      L
When SW is OFF, current flows
        L      D      RL
The value of inductance increase current between
ON period. (d*Ts)
        IL=Ei/L*d*Ts . . . . . . . . . . . . . . . . . .(1)
The value of inductance decrease current between
OFF period. ((1-d)*Ts) . . . . . . . . . . . . . . . .(2)
From equation (1) and (2),
E0=d/(1-d)*Ei
Ts : Period of oscillation
VL
VL
L
C
T100
D(D102)
Eo
Eo
Ts
dTs
RL
Ei
SW
(Q100)
T
IL
Ei
(1-d)Ts
dTs
27
     
UF-6300/6200/5300
     
1.1.14 LAN Control Circuit (Option)
LAN Controller
1. LAN Controller (IC1)
This conforms to IEEE 802.3 Ethernet Controller. The CPU (SC PCB) bus is directly connected and the 
data interrupt is controlled by pLANINT. The 25 MHz clock is supplied by X1. The LAN Controller for 
the system timing clock divides the frequency provided from X1. The clock signal is also supplied for 
the Manchester encoding/decoding circuit for data conversion.
The LAN Controller is a mixed signal Analog/Digital device that implements the MAC and PHY portion 
of the CSMA/CD protocol at 10 and 100Mbps.
The LAN controller contains a built in 8 KByte RAM for transmission and reception buffer.
2. EEPROM (IC2)
This memory stores the configuration registers and MAC (Media Access Control) address for the LAN 
controller. Data is transferred to LAN controller (serial transfer) when the power is turned "On". The 
MAC address for the LAN controller represents the location on the LAN.
3. Ethernet Interface (RJ45 Connector)
Provides the 10Base-T/100Base-TX Ethernet interface.
Two LED (LINK and Activity) and Transformer module are in the RJ45 Connector.
a. LINK LED
The LINK LED normally illuminates when the LAN cable is connected and when a link pulse is 
detected. Consequently, LED can be used to determine whether the 10Base-T/100Base-TX cable 
has become disconnected (RX side).
b. Activity LED
This LED illuminates when reception data is present on the LAN. (The LED also illuminates when 
reception data for other devices is present.)
CPU
V850E/MA1
(IC1)
SHINE
DZAC000273
(IC3)
FROM 4MB
Program
(IC9)
FROM 8MB
Image Memory
(IC10)
MN86075
(IC30)
MODEM
MMD5020
(IC22)
DAA
 Si3056,
Si3019
(IC23, 24)
D-BUS
Laser Printer
CCD PCB
Line
Line
Memory
Page
Memory
ECM
Buffer
S-DRAM 8MB
(IC7)
LAN
Controller
(IC1)
RJ45
LINK
RX
INTERNET
(10Base-T/100Base-TX)
LAN PCB
EEP
ROM
(IC2)
25MHz
X1
(1)
(2)
28
     
UF-6300/6200/5300
     
Signal Routing
1. LAN Transmission
a. Transfers the MMR coded data from Image Memory (FROM) to CPU (SC PCB) and converts the 
MH coded data.
b. Transfer the MH coded data of CPU (SC PCB) to SDRAM.
c. Transfer the converted text data to buffer RAM on LAN controller (LAN PCB) sequentially.
d. The transmission packet is processed by FIFO transfer to buffer RAM and then converted for 
Manchester code. Finally, they are converted for differential pair signal and transmitted to Internet.
2. LAN Reception
a. Processed received data for Manchester coded signal at LAN controller.
b. The decoded received packet goes to buffer RAM through the FIFO. The data stored in buffer RAM 
is transferred to SDRAM (SC PCB) by requests from SC PCB.
c. Decodes the Base 64 for MH coded image data at SDRAM and transfers CPU (SC PCB).
d. Inputs MMR coded data from CPU transfers Image Memory (FROM).
Page of 117
Display

Click on the first or last page to see other UF-6300 / UF-6200 / UF-5300 (serv.man3) service manuals if exist.