DOWNLOAD Sharp AR-FN1 (serv.man10) Service Manual ↓ Size: 272.51 KB | Pages: 14 in PDF or view online for FREE

Model
AR-FN1 (serv.man10)
Pages
14
Size
272.51 KB
Type
PDF
Document
Service Manual
Brand
Device
Copying Equipment / ARFN1 Service Manual-Description of Circuits
File
ar-fn1-sm10.pdf
Date

Sharp AR-FN1 (serv.man10) Service Manual ▷ View online

7. Switch input circuit
This circuit checks whether the finisher is connected to the copier,
both the top and front doors are opened. It is connected to mi-
croswitches whose contacts are closed when the finisher is con-
nected to the copier or the doors are closed. 
Each switch is connected in series from 
+
24V so that it becomes a
power supply switch for the drive. That is, 
+
24V is not conducted to
the drive if all the 3 microswitches are closed. 
When the finisher is connected to the copier, the microswitch turns
on, letting 
+
24V be applied to ZD4. This allows electric current to flow
to the base resistance of the transistor array TD62504 (IC19), thus
turning on the transistor to change the expansion I/O PG1 (DSW1
signal) to L level.
When the finisher is disconnected from the copier, the transistor is
turned off to change the expansion I/O PG1 to H level. ZD4 (RD6.2E)
has a threshold level preset, to increase detection speed when the
supply of 
+
24V is cut off. The levels of PG2 and 3 (DSW2, 3 signals)
also change when the top and front door switch is opened and
closed.
In addition, when 
+
24V power supply from the copier is cut off, the
expansion I/O PG0 (PWD signal) level changes at the above circuit.
Here are logic’s at the time of the power supply from the copier being
cut off and the doors opening and closing being detected.
Upper Lower
Status
Expansion
I/O port
PG0
PG1
PG2
PG3
Remarks
Signal
name
PWD
DSW1 DSW2 DSW3
Power supply from
copier is cut off
H
d.c
d.c
d.c
Disconnected from
copier
L
H
d.c
d.c
H:
Power supply cut off (door open)
L:
Conducting (door closed)
d.c: Unknown (no status is shown because power is cut off at up-
stream)
PWD    54
DSW1  55
DSW2  56
DSW3  57
BR10
10Kx5
O1
O2
O3
O4
O5
O6
O7
COM
I1
I2
I3
I4
I5
I6
I7
GND
TD62504F
IC19
16
15
14
13
12
11
10
9
PWD
DSW1
DSW2
DSW3
5
6
7
8
+5V
(IC03)
PG0
PG1
PG2
PG3
RD6.2EB2
ZD05
RD6.2EB2
ZD04
RD6.2EB2
ZD03
RD6.2EB2
ZD06
+24VIN
+24V1
+24V1
+24V2
+24V2
+24V
+24V
I/O
2 3 4 5 6
4
3
2
1
Power supply +24V
Upper
Lower
Copier connection sw
Upper door sw
to each motor and
solenoid clutch
Finisher door monitoring circuit
Front door sw
Microswitch x 3
Normal: SW ON
Copier separated
or door open: SW OFF
9 – 7
8. Solenoid and clutch drive circuit
The solenoid and clutch drive circuit uses non-inversion transistor
arrays TD62318AP (IC17, 18) which turn on the solenoids and
clutches when the input signal is at L; and an inversion transistor
array TD62004AP (IC5) which turns on the solenoids and clutches
when the input signal is at H.
The expansion I/O PG port which controls the solenoids and clutches
is an open collector type which becomes high impedance when reset-
ting and H output. For this reason, to turn on the solenoids and
clutches at L level, the non-inversion type TD62318AP is used for
driving the PG port. On the other hand, the expansion I/O’s PC port is
at L level at resetting. For this reason, for driving the PC port, the
inversion type TD62004AP which turns on the solenoids and clutches
at H level is used.
9. Jogger motor drive circuit
The jogger motor control signal (JMA, A/, B. B/) from the expansion
I/O (IC3) is input into the driver IC TD62004AP (IC8), to drive the
jogger stepping motor which aligns the sheets sidewise.
The driving method is unipolar, 1-2 phase excitement, constant-volt-
age method.
Here is the driving pattern for the jogger motor.
(IC03)
PF0
PF1
PF2
PF3
59  INGSL/
60  T3UPSL/
61  OG1SL/
62  OG3SL/
PC4
PC5
PC6
PC7
49  SPSL
48  STSL
47  OG2SL
46  WLCL
PF4
PF5
PF6
PF7
63  RRSL/
64  T12CL/
1  PDCL/
2  STORCL/
1
2
3
4
5
6
7
8
13
4
5
12
13
4
5
12
14
11
6
3
14
11
6
3
16
15
14
13
12
11
10
9
I1
I2
I3
I4
I5
I6
I7
GND
COM
O1
O2
O3
O4
O5
O6
O7
IC05
TD62004AP
IC17
IC18
TD62318AP
8
16
9
1
15
10
7
2
I4
I3
I2
I1
O4
O3
O2
O1
VCC2
VCC1
COM2
COM1
GND
GND
GND
GND
8
16
9
1
15
10
7
2
I4
I3
I2
I1
O4
O3
O2
O1
VCC2
VCC1
COM2
COM1
GND
GND
GND
GND
TD62318AP
+24V
RD16FB
RD16FB
ZD02
ZD08
+5V
+24V
+5V
+24V
SPSL/
STSL/
OG2SL/
WLCL/
INGSL/
T3UPSL/
OG1SL/
OG3SL/
RRSL/
T12CL/
PDCL/
STORCL/
+24V
+24V
+24V
I/0
RRSL
T12CL
PDCL
STORCL
OG3SL
OG1SL
T3UPSL
INGSL
WLCL
OG2SL
STSL
SPSL
I/O
PC0
PC3
(IC03)
50
53
52
51
PC2
PC1
JMA
JMA/
JMB
JMB/
1
2
3
4
I1
5
7
6
8
I2
I3
I4
I5
I6
I7
GND
IC08
TD62004AP
O1
O2
O3
O4
O5
O6
O7
COM
9
16
15
14
13
11
12
10
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
R13
2.4K(1/4W)
JGMA
JGMA/
JGMB
JGMB/
+24V
JGM
+24V
+24V
JMA
JMB
JMA/
JMB/
Alignment direction
Stop
Opening direction
9 – 8
10. Pusher, reversion, staple unit
movement motor drive circuit
The pusher motor control signal (PMA, A/, B, B/), reversion motor
control signal (RMA, A/, B, B/) and staple unit movement motor con-
trol signal (STUMA, A/, B, B/) from the CPU (IC21) is input to the
stepping motor driver IC SLA7024M (IC11, 4, 7), to drive the following
motors: the pusher motor which elevates the paper  inside the staple
tray to the stapling position and paper discharge position; the rever-
sion motor which reverses the paper; and the staple unit movement
motor which move the staple unit to the stapling position.
The driving method is a unipolar, 2-phase (pusher), 1-2 phase (rever-
sion, staple unit movement), constant-current chopper driving
method.
When the paper is stored inside the staple tray by static excitement
onto the pusher motor, the PMPD signal from the CPU is made at H
level to set the motor power down mode, in order to suppress heat
buildup (usually set to about 50% of the motor drive current).
Here are the driving patterns for the pusher, reversion, staple unit
movement motors.
PMA
PMB
PMA/
PMB/
Up
Stop
Energized  
Down
RMA
RMB
RMA/
RMB/
Reversion unit paper
entry direction
Stop
Reversion unit paper
discharge direction
STUMA
STUMB
STUMA/
STUMB/
Front direction
Stop
Rear direction
CPU
PB0
PB3
(IC02)
2
5
4
3
PB2
PB1
RMA
RMA/
RMB
RMB/
3
14
10
6
REFA
5
16
17
REFB
RSB
IN A
IN/A
IN B
IN/B
IC04
SLA7024MT
OUT A
OUT/A
OUT B
OUT/B
GA
GB
VSA 7
1
8
11
18
4
15
RVMA
RVMA/
RVMB
RVMB/
+24V
12
VSB
2
9
13
TDA
TDB
RSA
R142
47K
C132
470P
C136
470P
+5V
C04 47U/35V
RVM
+24V
+24V
R146
47K
C135
2200P
R01
1(1W)
R145
2.4K
R02
1(1W)
R144
2.4K
C134
2200P
R143
0.1U
C133
100
R141
910
+5V
PB4
PB7
58
9
8
7
PB6
PB5
PMA
PMA/
PMB
PMB/
3
14
10
6
REFA
5
16
17
REFB
RSB
IN A
IN/A
IN B
IN/B
IC11
SLA7024MT
OUT A
OUT/A
OUT B
OUT/B
GA
GB
VSA 7
1
8
11
18
4
15
PSMA
PSMA/
PSMB
PSMB/
+24V
12
VSB
2
9
13
TDA
TDB
RSA
R154
47K
C143
470P
C147
470P
+5V
C05
47U/35V
PSM
+24V
+24V
R159
47K
C146
2200P
R14
1(2W)
R157
2.4K
R15
1(2W)
R156
2.4K
C145
2200P
R155
0.1U
C144
200
R158
910
+5V
IC05
TD62004AP
10
7
P40
P43
18
21
20
19
P42
P41
STUMA
STUMA/
STUMB
STUMB/
3
14
10
6
REFA
5
16
17
REFB
RSB
IN A
IN/A
IN B
IN/B
IC07
SLA7024MT
OUT A
OUT/A
OUT B
OUT/B
GA
GB
VSA 7
1
8
11
18
4
15
STUMA
STUMA/
STUMB
STUMB/
+24V
12
VSB
2
9
13
TDA
TDB
RSA
R148
47K
C138
470P
C142
470P
+5V
C03 47U/35V
STUM
+24V
+24V
R152
47K
C141
2200P
R11
1(1W)
R151
2.4K
R12
1(1W)
R150
2.4K
C140
2200P
R149
0.1U
C139
160
R147
910
+5V
6
P60
PMPD
R153
200
Reversion motor driving circuit
Pusher motor driving circuit
Staple unit moving motor driving circuit
9 – 9
11. Elevator motor drive circuit
The elevator motor control signal (EMA, B) from the expansion I/O is
input through the driver TD62503F (IC13) to the H driver STA457C
(IC12), to drive the elevator motor which adjusts the tray height ac-
cording to the paper volume stored in the off-set tray (tray 3). EMA,B
signal logic controls the rotational direction of the motor (CW/CCW) to
move up and down the tray.
The motor is braked to improve the stopping accuracy of the tray.
TD62503 (IC13, a driver for driving STA457C, consists of R180-
R183, R197, R198, C158, C159, C166, C167, D7, and D8 which
forms a delay circuit to prevent short electric current from flowing
inside the H driver when EMA and B are changed over.
To protect the circuit from shorting and motor locking, a protective
fuse (F3) is installed.
EMB
EMA
Rotational
direction
Working direction
0
0
Brake
Brake
0
1
CW
Elevation
1
0
CCW
Descent
1
1
Stop
Stop
12. Off-set motor drive circuit
The off-set motor control signal (OFMA,B) from the CPU is input to
the H driver TA7291S (IC1), to drive the off-set motor which moves
the tray sidewise against the paper discharge direction, in order to
sort the sheets discahrged to the off-set tray (tray 3) by the number of
sheets specified.
The rotational direction of the motor is crank controlled in one direc-
tion (CW) and braked to a stop at the off-set home position.
To protect the circuit from shorting and motor locking, a protective
fuse (F1) is installed.
OFMB
OFMA
Rotational
direction
Working direction
0
0
Stop
Stop
0
1
CCW
Not used
1
0
CW
Off-set operation
1
1
Brake
Brake
9
4
8
F03
1.15A/125V
T1.0A/250V
+24V
1
6
8
4
9
STA457C
IC12
6
1
3
3
2
7
7
5
5
10
10
EVM+
EVM-
EVM
D06    D05
1SR124-400x2
I/O
(IC03)
PE0
PE1
4  EMA
5  EMB
TD62503F
TD62503F
TD62503F
TD62503F
+5V
R183
R182
R181
R180
D07
D08
R178
R179
4.7K
4.7K
200
200
1K
1K
1SS133
1SS133
C158
1000P
C159
1000P
1
16
2
15
3
14
4
13
IC13D
IC13C
IC13B
IC13A
+5V
R198
R197
1K
C166
68000P
C167
68000P
R20
R19
2.4K(1/4W)
2.4K(1/4W)
1K
2
Vcc
IN1
IN2
GND
VS
VREF
OUT1
OUT2
TA7291S
IC01
2
9
1
5
3
7
8
6
CPU
(IC02)
P44
P45
23  OFMA
24  OFMB
R101
R102
47K
47K
+5V
F01
0.315A/125V
T0.25A/250V
C01
10U/35V
OFM+
OFM-
OFM
+24V
9 – 10
Page of 14
Display

Click on the first or last page to see other AR-FN1 (serv.man10) service manuals if exist.