DOWNLOAD Panasonic CS-MZ20UD3EA Service Manual ↓ Size: 14.93 MB | Pages: 103 in PDF or view online for FREE

Model
CS-MZ20UD3EA
Pages
103
Size
14.93 MB
Type
PDF
Document
Service Manual
Brand
Device
Air Conditioner / AIR CONDITIONER
File
cs-mz20ud3ea.pdf
Date

Panasonic CS-MZ20UD3EA Service Manual ▷ View online

  
CAUTION 
7. 
Leak detection methods 
 
Electronic leak detectors shall be used to detect flammable refrigerants, but the sensitivity may not be adequate, or may need re-
calibration. 
(Detection equipment shall be calibrated in a refrigerant-free area.) 
 
Ensure that the detector is not a potential source of ignition and is suitable for the refrigerant used. 
 
Leak detection equipment shall be set at a percentage of the LFL of the refrigerant and shall be calibrated to the refrigerant 
employed and the appropriate percentage of gas (25 % maximum) is confirmed. 
 
Leak detection fluids are suitable for use with most refrigerants but the use of detergents containing chlorine shall be avoided as the 
chlorine may react with the refrigerant and corrode the copper pipe-work. 
 
If a leak is suspected, all naked flames shall be removed/extinguished. 
 
If a leakage of refrigerant is found which requires brazing, all of the refrigerant shall be recovered from the system, or isolated (by 
means of shut off valves) in a part of the system remote from the leak. Oxygen free nitrogen (OFN) shall then be purged through 
the system both before and during the brazing process. 
8. 
Removal and evacuation 
 
When breaking into the refrigerant circuit to make repairs – or for any other purpose – conventional procedures shall be used. 
However, it is important that best practice is followed since flammability is a consideration. 
The following procedure shall be adhered to: 
 
• remove refrigerant -> • purge the circuit with inert gas -> • evacuate -> • purge again with inert gas -> 
• open the circuit by cutting or brazing 
 
 
The refrigerant charge shall be recovered into the correct recovery cylinders. 
 
The system shall be “flushed” with OFN to render the unit safe. 
 
This process may need to be repeated several times. 
 
Compressed air or oxygen shall not be used for this task. 
 
Flushing shall be achieved by breaking the vacuum in the system with OFN and continuing to fill until the working pressure is 
achieved, then venting to atmosphere, and finally pulling down to a vacuum. 
 
This process shall be repeated until no refrigerant is within the system. 
 
When the final OFN charge is used, the system shall be vented down to atmospheric pressure to enable work to take place. 
 
This operation is absolutely vital if brazing operations on the pipe work are to take place. 
 
Ensure that the outlet for the vacuum pump is not close to any ignition sources and there is ventilation available. 
9. 
Charging procedures 
 
In addition to conventional charging procedures, the following requirements shall be followed. 
-       Ensure that contamination of different refrigerants does not occur when using charging equipment. 
-       Hoses or lines shall be as short as possible to minimize the amount of refrigerant contained in them. 
-       Cylinders shall be kept upright. 
-       Ensure that the refrigeration system is earthed prior to charging the system with refrigerant. 
-       Label the system when charging is complete (if not already). 
-       Extreme care shall be taken not to over fill the refrigeration system. 
 
Prior to recharging the system it shall be pressure tested with OFN (refer to #7). 
 
The system shall be leak tested on completion of charging but prior to commissioning. 
 
A follow up leak test shall be carried out prior to leaving the site. 
 
Electrostatic charge may accumulate and create a hazardous condition when charging and discharging the refrigerant. 
To avoid fire or explosion, dissipate static electricity during transfer by grounding and bonding containers and equipment before 
charging/discharging. 
10. 
Decommissioning 
 
Before carrying out this procedure, it is essential that the technician is completely familiar with the equipment and all its details. 
 
It is recommended good practice that all refrigerants are recovered safely. 
 
Prior to the task being carried out, an oil and refrigerant sample shall be taken in case analysis is required prior to re-use of 
reclaimed refrigerant. 
 
It is essential that electrical power is available before the task is commenced. 
a)
 
Become familiar with the equipment and its operation. 
b)
 
Isolate system electrically. 
c)
 
Before attempting the procedure ensure that: 
 
• mechanical handling equipment is available, if required, for handling refrigerant cylinders; 
• all personal protective equipment is available and being used correctly; 
• the recovery process is supervised at all times by a competent person; 
• recovery equipment and cylinders conform to the appropriate standards. 
 
d)
 
Pump down refrigerant system, if possible. 
e)
 
If a vacuum is not possible, make a manifold so that refrigerant can be removed from various parts of the system. 
f)
 
Make sure that cylinder is situated on the scales before recovery takes place. 
g)
 
Start the recovery machine and operate in accordance with manufacturer’s instructions. 
h)
 
Do not over fill cylinders. (No more than 80 % volume liquid charge). 
i)
 
Do not exceed the maximum working pressure of the cylinder, even temporarily. 
j)
 
When the cylinders have been filled correctly and the process completed, make sure that the cylinders and the  
 
equipment are removed from site promptly and all isolation valves on the equipment are closed off. 
k)
 
Recovered refrigerant shall not be charged into another refrigeration system unless it has been cleaned and checked. 
 
Electrostatic charge may accumulate and create a hazardous condition when charging or discharging the refrigerant.  
To avoid fire or explosion, dissipate static electricity during transfer by grounding and bonding containers and equipment before 
charging/discharging. 
  
CAUTION 
11. 
Labelling 
 
Equipment shall be labelled stating that it has been de-commissioned and emptied of refrigerant. 
 
The label shall be dated and signed. 
 
Ensure that there are labels on the equipment stating the equipment contains flammable refrigerant. 
12. 
Recovery 
 
When removing refrigerant from a system, either for servicing or decommissioning, it is recommended good practice that all 
refrigerants are removed safely. 
 
When transferring refrigerant into cylinders, ensure that only appropriate refrigerant recovery cylinders are employed. 
 
Ensure that the correct number of cylinders for holding the total system charge are available. 
 
All cylinders to be used are designated for the recovered refrigerant and labelled for that refrigerant (i.e. special cylinders for the 
recovery of refrigerant). 
 
Cylinders shall be complete with pressure relief valve and associated shut-off valves in good working order. 
 
Recovery cylinders are evacuated and, if possible, cooled before recovery occurs. 
 
The recovery equipment shall be in good working order with a set of instructions concerning the equipment that is at hand and shall 
be suitable for the recovery of flammable refrigerants. 
 
In addition, a set of calibrated weighing scales shall be available and in good working order. 
 
Hoses shall be complete with leak-free disconnect couplings and in good condition. 
 
Before using the recovery machine, check that it is in satisfactory working order, has been properly maintained and that any 
associated electrical components are sealed to prevent ignition in the event of a refrigerant release. 
Consult manufacturer if in doubt. 
 
The recovered refrigerant shall be returned to the refrigerant supplier in the correct recovery cylinder, and the relevant Waste 
Transfer Note arranged. 
 
Do not mix refrigerants in recovery units and especially not in cylinders. 
 
If compressors or compressor oils are to be removed, ensure that they have been evacuated to an acceptable level to make certain 
that flammable refrigerant does not remain within the lubricant. 
 
The evacuation process shall be carried out prior to returning the compressor to the suppliers. 
 
Only electric heating to the compressor body shall be employed to accelerate this process. 
 
When oil is drained from a system, it shall be carried out safely. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10 
3. Specifications 
Model Indoor 
CS-MZ20UD3EA 
Performance Test Condition 
EUROVENT 
Power Supply 
Phase, Hz 
Single, 50 
V 230 
 Min. 
Mid. 
Max. 
Cooling 
Capacity 
kW 1.80  2.00  2.90 
BTU/h 6140 
6820 
9890 
Running Current 
– 
2.70 
– 
Input Power 
340 
550 
860 
Annual Consumption 
kWh 
– 
275 
– 
EER W/W 
5.29  3.64  3.37 
Indoor Noise (H / L / QLo) 
dB-A 
34 / 29 / 26 
Power Level dB 
50 / – / – 
Heating
 
Capacity 
kW 1.20  3.20  4.10 
BTU/h 4090 
10900  14000 
Running Current 
– 
4.10 
– 
Input Power 
300 
840 
1.33k 
COP W/W 
4.00  3.81  3.08 
Indoor Noise (H / L / QLo) 
dB-A 
36 / 29 / 26 
Power Level dB 
52 / – / – 
Indoor Fan
 
Type  
SIROCCO 
Material  
GFZ010A 
GF20 
Motor Type 
 
DC / Transistor (8-poles) 
Input Power 
– 
Output Power 
51 
Speed 
QLo 
Cool rpm 
800 
Heat rpm 
790 
Lo 
Cool rpm 
880 
Heat rpm 
860 
Me 
Cool rpm 
970 
Heat rpm 
960 
Hi 
Cool rpm 
1070 
Heat rpm 
1070 
SHi 
Cool rpm 
1120 
Heat rpm 
1120 
Moisture Removal 
L/h (Pt/h) 
1.3 (2.7) 
Indoor 
Airflow 
QLo 
Cool m
3
/min (ft
3
/min.) 7.3 
(260) 
Heat m
3
/min (ft
3
/min.) 7.2 
(250) 
Lo 
Cool m
3
/min (ft
3
/min.) 8.2 
(290) 
Heat m
3
/min (ft
3
/min.) 7.9 
(280) 
Me 
Cool m
3
/min (ft
3
/min.) 9.0 
(320) 
Heat m
3
/min (ft
3
/min.) 8.9 
(310) 
Hi 
Cool m
3
/min (ft
3
/min.) 10.1 
(355) 
Heat m
3
/min (ft
3
/min.) 10.1 
(355) 
SHi 
Cool m
3
/min (ft
3
/min.) 10.5 
(370) 
Heat m
3
/min (ft
3
/min.) 10.5 
(370) 
Dimension 
Height (I/D) 
mm (inch) 
200 (7-7/8) 
Width (I/D) 
mm (inch) 
750 (29-17/32) 
Depth (I/D) 
mm (inch) 
640 (25-7/32) 
11 
Model Indoor 
CS-MZ20UD3EA 
Weight 
Net (I/D) 
kg (lb) 
19 (42) 
Piping 
Pipe Diameter  
(Liquid / Gas) 
mm (inch) 
6.35 (1/4) / 9.52 (3/8) 
Drain Hose 
Inner Diameter 
mm  
16 
Length mm 
117.5 
Indoor Heat 
Exchanger 
Fin Material 
 
Aluminium (Pre Coat) 
Fin Type 
 
Slit Fin 
Row × Stage × FPI 
 
3 × 12 × 18 
Size (W × H × L) 
mm 
590 × 282 × 38.1 
Air Filter 
Material  
– 
Type  
– 
Power Supply 
 
Outdoor 
Power Supply Cord 
Nil 
Thermostat  
Electronic 
Contol 
Protection Device 
 
Electronic Contol 
 
Dry Bulb 
Wet Bulb 
Indoor 
Operation 
Range 
Cooling 
Maximum °C 
32 
23 
Minimum °C 
16 
11 
Heating 
Maximum °C 
30 
– 
Minimum °C 
16 
– 
 
1. 
Cooling capacities are based on indoor temperature of 27°C Dry Bulb (80.6°F Dry Bulb), 19.0°C Wet Bulb (66.2°F Wet Bulb) and outdoor air 
temperature of 35°C DRY BULB (95°F Dry Bulb), 24°C Wet Bulb (75.2°F Wet Bulb). 
2. 
Heating capacities are based on indoor temperature of 20°C Dry Bulb (68°F Dry Bulb) and outdoor air temperature of 7°C Dry Bulb (44.6°F 
Dry Bulb), 6°C Wet Bulb (42.8°F Wet Bulb). 
3. 
Heating low temperature capacity, Input Power and COP measured at 230 V, indoor temperature 20°C, outdoor 2/1°C. 
4. 
Heating extreme low temperature capacity, Input Power and COP measured at 230 V, indoor temperature 20°C, outdoor -7/-8°C. 
5. 
Standby power consumption ≤10.0w (when switched OFF by remote control, except under self protection control). 
6. 
Specifications are subjected to change without prior notice for further improvement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Page of 103
Display

Click on the first or last page to see other CS-MZ20UD3EA service manuals if exist.